mirror of
https://github.com/ColonelParrot/jscanify.git
synced 2025-12-30 22:31:52 +00:00
119 lines
4.1 KiB
Markdown
119 lines
4.1 KiB
Markdown
<p align="center">
|
|
<img src="docs/images/logo-github.png" height="100">
|
|
</p>
|
|
|
|
<p align="center">
|
|
<a href="https://www.jsdelivr.com/package/gh/ColonelParrot/jscanify"><img src="https://data.jsdelivr.com/v1/package/gh/ColonelParrot/jscanify/badge"></a>
|
|
<a href="https://cdnjs.com/libraries/jscanify"><img src="https://img.shields.io/cdnjs/v/jscanify"></a>
|
|
<a href="https://npmjs.com/package/jscanify"><img src="https://badgen.net/npm/dw/jscanify"></a>
|
|
<br />
|
|
<a href="https://github.com/puffinsoft/jscanify/blob/master/LICENSE"><img src="https://img.shields.io/github/license/puffinsoft/jscanify.svg"></a>
|
|
<a href="https://npmjs.com/package/jscanify"><img src="https://badgen.net/npm/v/jscanify"></a>
|
|
</p>
|
|
|
|
<p align="center">
|
|
<a href="https://nodei.co/npm/jscanify/"><img src="https://nodei.co/npm/jscanify.png"></a>
|
|
</p>
|
|
|
|
<p align="center">
|
|
Open-source pure Javascript implemented mobile document scanner. Powered with <a href="https://docs.opencv.org/3.4/d5/d10/tutorial_js_root.html">opencv.js</a><br/>
|
|
Supports the web, NodeJS, <a href="https://github.com/ColonelParrot/react-scanify-demo">React</a>, and others.
|
|
<br/><br/>
|
|
Available on <a href="https://www.npmjs.com/package/jscanify">npm</a> or via <a href="https://www.jsdelivr.com/package/gh/ColonelParrot/jscanify">cdn</a><br/>
|
|
</p>
|
|
|
|
**Features**:
|
|
|
|
- paper detection & highlighting
|
|
- paper scanning with distortion correction
|
|
|
|
| Image Highlighting | Scanned Result |
|
|
| -------------------------------------------- | ------------------------------------------ |
|
|
| <img src="docs/images/highlight-paper1.png"> | <img src="docs/images/scanned-paper1.png"> |
|
|
| <img src="docs/images/highlight-paper2.png"> | <img src="docs/images/scanned-paper2.png"> |
|
|
|
|
## Quickstart
|
|
|
|
> **Developers Note**: you can now use the [jscanify debugging tool](https://colonelparrot.github.io/jscanify/tester.html) to observe the result (highlighting, extraction) on test images.
|
|
|
|
### Import
|
|
|
|
npm:
|
|
|
|
```js
|
|
$ npm i jscanify
|
|
import jscanify from 'jscanify'
|
|
```
|
|
|
|
cdn:
|
|
|
|
```html
|
|
<script src="https://docs.opencv.org/4.7.0/opencv.js" async></script>
|
|
<!-- warning: loading OpenCV can take some time. Load asynchronously -->
|
|
<script src="https://cdn.jsdelivr.net/gh/ColonelParrot/jscanify@master/src/jscanify.min.js"></script>
|
|
```
|
|
|
|
> **Note**: jscanify on NodeJS is slightly different. See [wiki: use on NodeJS](https://github.com/ColonelParrot/jscanify/wiki#use-on-nodejs).
|
|
|
|
### Highlight Paper in Image
|
|
|
|
```html
|
|
<img src="/path/to/your/image.png" id="image" />
|
|
```
|
|
|
|
```js
|
|
const scanner = new jscanify();
|
|
image.onload = function () {
|
|
const highlightedCanvas = scanner.highlightPaper(image);
|
|
document.body.appendChild(highlightedCanvas);
|
|
};
|
|
```
|
|
|
|
### Extract Paper
|
|
|
|
```js
|
|
const scanner = new jscanify();
|
|
const paperWidth = 500;
|
|
const paperHeight = 1000;
|
|
image.onload = function () {
|
|
const resultCanvas = scanner.extractPaper(image, paperWidth, paperHeight);
|
|
document.body.appendChild(resultCanvas);
|
|
};
|
|
```
|
|
|
|
### Highlighting Paper in User Camera
|
|
|
|
The following code continuously reads from the user's camera and highlights the paper:
|
|
|
|
```html
|
|
<video id="video"></video> <canvas id="canvas"></canvas>
|
|
<!-- original video -->
|
|
<canvas id="result"></canvas>
|
|
<!-- highlighted video -->
|
|
```
|
|
|
|
```js
|
|
const scanner = new jscanify();
|
|
const canvasCtx = canvas.getContext("2d");
|
|
const resultCtx = result.getContext("2d");
|
|
navigator.mediaDevices.getUserMedia({ video: true }).then((stream) => {
|
|
video.srcObject = stream;
|
|
video.onloadedmetadata = () => {
|
|
video.play();
|
|
|
|
setInterval(() => {
|
|
canvasCtx.drawImage(video, 0, 0);
|
|
const resultCanvas = scanner.highlightPaper(canvas);
|
|
resultCtx.drawImage(resultCanvas, 0, 0);
|
|
}, 10);
|
|
};
|
|
});
|
|
```
|
|
|
|
To export the paper to a PDF, see [here](https://stackoverflow.com/questions/23681325/convert-canvas-to-pdf)
|
|
|
|
### Notes
|
|
|
|
- for optimal paper detection, the paper should be placed on a flat surface with a solid background color
|
|
- we recommend wrapping your code using `jscanify` in a window `load` event listener to ensure OpenCV is loaded
|