mirror of
https://github.com/ColonelParrot/jscanify.git
synced 2025-12-31 06:31:54 +00:00
Compare commits
1 Commits
9749c97498
...
1138b6216e
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
1138b6216e |
128
README.md
128
README.md
@ -1,127 +1 @@
|
||||
<p align="center">
|
||||
<img src="docs/images/logo-github.png" height="150">
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://www.jsdelivr.com/package/gh/ColonelParrot/jscanify"><img src="https://data.jsdelivr.com/v1/package/gh/ColonelParrot/jscanify/badge"></a>
|
||||
<a href="https://cdnjs.com/libraries/jscanify"><img src="https://img.shields.io/cdnjs/v/jscanify"></a>
|
||||
<a href="https://npmjs.com/package/jscanify"><img src="https://badgen.net/npm/dw/jscanify"></a>
|
||||
<br />
|
||||
<a href="https://github.com/puffinsoft/jscanify/blob/master/LICENSE"><img src="https://img.shields.io/github/license/puffinsoft/jscanify.svg"></a>
|
||||
<a href="https://npmjs.com/package/jscanify"><img src="https://badgen.net/npm/v/jscanify"></a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://nodei.co/npm/jscanify/"><img src="https://nodei.co/npm/jscanify.png"></a>
|
||||
</p>
|
||||
|
||||
<p align="center">
|
||||
Powered with <a href="https://docs.opencv.org/3.4/d5/d10/tutorial_js_root.html">opencv.js</a><br/>
|
||||
Supports the web, NodeJS, <a href="https://github.com/ColonelParrot/react-scanify-demo">React</a>, and others.
|
||||
<br/>
|
||||
Available on <a href="https://www.npmjs.com/package/jscanify">npm</a> or via <a href="https://www.jsdelivr.com/package/gh/ColonelParrot/jscanify">cdn</a><br/>
|
||||
</p>
|
||||
|
||||
|
||||
**Features**:
|
||||
|
||||
- paper detection & highlighting
|
||||
- paper scanning with distortion correction
|
||||
|
||||
> [!IMPORTANT]
|
||||
> 🎉 _jscanify v1.3.0_ has just been released! **Same API, better results.** See the [release](https://github.com/puffinsoft/jscanify/releases/tag/v1.3.0) to see the difference! 🎉
|
||||
|
||||
|
||||
- 🆕 glare suppression
|
||||
- 🆕 multi-colored paper support
|
||||
|
||||
<hr />
|
||||
|
||||
<img src="docs/images/github-explanation-long.png" />
|
||||
|
||||
<hr/>
|
||||
|
||||
## Quickstart
|
||||
|
||||
> **Developers Note**: you can now use the [jscanify debugging tool](https://colonelparrot.github.io/jscanify/tester.html) to observe the result (highlighting, extraction) on test images.
|
||||
|
||||
### Import
|
||||
|
||||
npm:
|
||||
|
||||
```js
|
||||
$ npm i jscanify
|
||||
import jscanify from 'jscanify'
|
||||
```
|
||||
|
||||
cdn:
|
||||
|
||||
```html
|
||||
<script src="https://docs.opencv.org/4.7.0/opencv.js" async></script>
|
||||
<!-- warning: loading OpenCV can take some time. Load asynchronously -->
|
||||
<script src="https://cdn.jsdelivr.net/gh/ColonelParrot/jscanify@master/src/jscanify.min.js"></script>
|
||||
```
|
||||
|
||||
> **Note**: jscanify on NodeJS is slightly different. See [wiki: use on NodeJS](https://github.com/ColonelParrot/jscanify/wiki#use-on-nodejs).
|
||||
|
||||
### Highlight Paper in Image
|
||||
|
||||
```html
|
||||
<img src="/path/to/your/image.png" id="image" />
|
||||
```
|
||||
|
||||
```js
|
||||
const scanner = new jscanify();
|
||||
image.onload = function () {
|
||||
const highlightedCanvas = scanner.highlightPaper(image);
|
||||
document.body.appendChild(highlightedCanvas);
|
||||
};
|
||||
```
|
||||
|
||||
### Extract Paper
|
||||
|
||||
```js
|
||||
const scanner = new jscanify();
|
||||
const paperWidth = 500;
|
||||
const paperHeight = 1000;
|
||||
image.onload = function () {
|
||||
const resultCanvas = scanner.extractPaper(image, paperWidth, paperHeight);
|
||||
document.body.appendChild(resultCanvas);
|
||||
};
|
||||
```
|
||||
|
||||
### Highlighting Paper in User Camera
|
||||
|
||||
The following code continuously reads from the user's camera and highlights the paper:
|
||||
|
||||
```html
|
||||
<video id="video"></video> <canvas id="canvas"></canvas>
|
||||
<!-- original video -->
|
||||
<canvas id="result"></canvas>
|
||||
<!-- highlighted video -->
|
||||
```
|
||||
|
||||
```js
|
||||
const scanner = new jscanify();
|
||||
const canvasCtx = canvas.getContext("2d");
|
||||
const resultCtx = result.getContext("2d");
|
||||
navigator.mediaDevices.getUserMedia({ video: true }).then((stream) => {
|
||||
video.srcObject = stream;
|
||||
video.onloadedmetadata = () => {
|
||||
video.play();
|
||||
|
||||
setInterval(() => {
|
||||
canvasCtx.drawImage(video, 0, 0);
|
||||
const resultCanvas = scanner.highlightPaper(canvas);
|
||||
resultCtx.drawImage(resultCanvas, 0, 0);
|
||||
}, 10);
|
||||
};
|
||||
});
|
||||
```
|
||||
|
||||
To export the paper to a PDF, see [here](https://stackoverflow.com/questions/23681325/convert-canvas-to-pdf)
|
||||
|
||||
### Notes
|
||||
|
||||
- for optimal paper detection, the paper should be placed on a flat surface with a solid background color
|
||||
- we recommend wrapping your code using `jscanify` in a window `load` event listener to ensure OpenCV is loaded
|
||||
# this repository has been moved to [puffinsoft/jscanify](https://github.com/puffinsoft/jscanify)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user